Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 928: 172267, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38583628

RESUMEN

Soils represent crucial sinks for pharmaceuticals and microplastics, making them hotspots for pharmaceuticals and plastic pollution. Despite extensive research on the toxicity of pharmaceuticals and microplastics individually, there is limited understanding of their combined effects on soil biota. This study focused on the earthworm Eisenia fetida as test organism to evaluate the biotoxicity and bioaccumulation of the typical pharmaceutical naproxen and microplastics in earthworms. Results demonstrated that high concentrations of naproxen (100 mg kg-1) significantly increased the malondialdehyde (MDA) content, inducing lipid peroxidation. Even though the low exposure of naproxen exhibits no significant influence to Eisenia fetida, the lipid peroxidation caused by higher concentration than environmental relevant concentrations necessitate attention due to temporal and spatial concentration variability found in the soil environment. Meanwhile, microplastics caused oxidative damage to antioxidant enzymes by reducing the superoxide dismutase (SOD) activity and MDA content in earthworms. Metabolome analysis revealed increased lipid metabolism in naproxen-treated group and reduced lipid metabolism in the microplastic-treated group. The co-exposure of naproxen and microplastics exhibited a similar changing trend to the microplastics-treated group, emphasizing the significant influence of microplastics. The detection of numerous including lipids like 17-Hydroxyandrostane-3-glucuronide, lubiprostone, morroniside, and phosphorylcholine, serves to identify potential biomarkers for naproxen and microplastics exposure. Additionally, microplastics increased the concentration of naproxen in earthworms at sub-organ and subcellular level. This study contributes valuable insights into the biotoxicity and distribution of naproxen and microplastics in earthworms, enhancing our understanding of their combined ecological risk to soil biota.


Asunto(s)
Microplásticos , Naproxeno , Oligoquetos , Contaminantes del Suelo , Oligoquetos/efectos de los fármacos , Naproxeno/toxicidad , Animales , Contaminantes del Suelo/toxicidad , Microplásticos/toxicidad , Ecotoxicología , Suelo/química , Monitoreo del Ambiente
2.
Cancer Lett ; 587: 216733, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38360141

RESUMEN

Despite significant advances in diagnostic techniques and treatment approaches, the prognosis of pancreatic ductal adenocarcinoma (PDAC) is still poor. Previous studies have reported that S-phase kinase-associated protein 2 (SKP2), a subunit of the SCF E3 ubiquitin ligase complex, is engaged in the malignant biological behavior of some tumor entities. However, SKP2 has not been fully investigated in PDAC. In the present study, it was observed that high expression of SKP2 significantly correlates with decreased survival time. Further experiments suggested that SKP2 promotes metastasis by interacting with the putative transcription factor paraspeckle component 1 (PSPC1). According to the results of coimmunoprecipitation and ubiquitination assays, SKP2 depletion resulted in the polyubiquitination of PSPC1, followed by its degradation. Furthermore, the SKP2-mediated ubiquitination of PSPC1 partially depended on the activity of the E3 ligase TRIM21. In addition, inhibition of the SKP2/PSPC1 axis by SMIP004, a traditional inhibitor of SKP2, impaired the migration of PDAC cells. In summary, this study provides novel insight into the mechanisms involved in PDAC malignant progression. Targeting the SKP2/PSPC1 axis is a promising strategy for the treatment of PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Quinasas Asociadas a Fase-S/genética , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Neoplasias Pancreáticas/genética , Ubiquitinación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Carcinoma Ductal Pancreático/genética , Proteínas de Unión al ARN/metabolismo
3.
Int J Legal Med ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38416217

RESUMEN

Massively parallel sequencing allows for integrated genotyping of different types of forensic markers, which reduces DNA consumption, simplifies experimental processes, and provides additional sequence-based genetic information. The STRseqTyper122 kit genotypes 63 autosomal STRs, 16 X-STRs, 42 Y-STRs, and the Amelogenin locus. Amplicon sizes of 117 loci were below 300 bp. In this study, MiSeq FGx sequencing metrics for STRseqTyper122 were presented. The genotyping accuracy of this kit was examined by comparing to certified genotypes of NIST standard reference materials and results from five capillary electrophoresis-based kits. The sensitivity of STRseqTyper122 reached 125 pg, and > 80% of the loci were correctly called with 62.5 pg and 31.25 pg input genomic DNA. Repeatability, species specificity, and tolerance for DNA degradation and PCR inhibitors of this kit were also evaluated. STRseqTyper122 demonstrated reliable performance with routine case-work samples and provided a powerful tool for forensic applications.

4.
BMC Genomics ; 24(1): 611, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828453

RESUMEN

Uniparental-inherited haploid genetic marker of Y-chromosome single nucleotide polymorphisms (Y-SNP) have the power to provide a deep understanding of the human evolutionary past, forensic pedigree, and bio-geographical ancestry information. Several international cross-continental or regional Y-panels instead of Y-whole sequencing have recently been developed to promote Y-tools in forensic practice. However, panels based on next-generation sequencing (NGS) explicitly developed for Chinese populations are insufficient to represent the Chinese Y-chromosome genetic diversity and complex population structures, especially for Chinese-predominant haplogroup O. We developed and validated a 639-plex panel including 633 Y-SNPs and 6 Y-Insertion/deletions, which covered 573 Y haplogroups on the Y-DNA haplogroup tree. In this panel, subgroups from haplogroup O accounted for 64.4% of total inferable haplogroups. We reported the sequencing metrics of 354 libraries sequenced with this panel, with the average sequencing depth among 226 individuals being 3,741×. We illuminated the high level of concordance, accuracy, reproducibility, and specificity of the 639-plex panel and found that 610 loci were genotyped with as little as 0.03 ng of genomic DNA in the sensitivity test. 94.05% of the 639 loci were detectable in male-female mixed DNA samples with a mix ratio of 1:500. Nearly all of the loci were genotyped correctly when no more than 25 ng/µL tannic acid, 20 ng/µL humic acid, or 37.5 µM hematin was added to the amplification mixture. More than 80% of genotypes were obtained from degraded DNA samples with a degradation index of 11.76. Individuals from the same pedigree shared identical genotypes in 11 male pedigrees. Finally, we presented the complex evolutionary history of 183 northern Chinese Hans and six other Chinese populations, and found multiple founding lineages that contributed to the northern Han Chinese gene pool. The 639-plex panel proved an efficient tool for Chinese paternal studies and forensic applications.


Asunto(s)
Pueblos del Este de Asia , Polimorfismo de Nucleótido Simple , Humanos , Genotipo , Reproducibilidad de los Resultados , Genética de Población , Haplotipos , Cromosomas Humanos Y/genética , ADN
5.
Drug Resist Updat ; 71: 101005, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37647746

RESUMEN

AIMS: Multidrug resistance in pancreatic cancer poses a significant challenge in clinical treatment. Bufalin (BA), a compound found in secretions from the glands of toads, may help overcome this problem. However, severe cardiotoxicity thus far has hindered its clinical application. Hence, the present study aimed to develop a cell membrane-camouflaged and BA-loaded polylactic-co-glycolic acid nanoparticle (CBAP) and assess its potential to counter chemoresistance in pancreatic cancer. METHODS: The toxicity of CBAP was evaluated by electrocardiogram, body weight, distress score, and nesting behavior of mice. In addition, the anticarcinoma activity and underlying mechanism were investigated both in vitro and in vivo. RESULTS: CBAP significantly mitigated BA-mediated acute cardiotoxicity and enhanced the sensitivity of pancreatic cancer to several clinical drugs, such as gemcitabine, 5-fluorouracil, and FOLFIRINOX. Mechanistically, CBAP directly bound to nucleotide-binding and oligomerization domain containing protein 2 (NOD2) and inhibited the expression of nuclear factor kappa-light-chain-enhancer of activated B cells. This inhibits the expression of ATP-binding cassette transporters, which are responsible for chemoresistance in cancer cells. CONCLUSIONS: Our findings indicate that CBAP directly inhibits NOD2. Combining CBAP with standard-of-care chemotherapeutics represents a safe and efficient strategy for the treatment of pancreatic cancer.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Pancreáticas , Animales , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico , Cardiotoxicidad , Membrana Celular , Resistencia a Múltiples Medicamentos , Neoplasias Pancreáticas
6.
J Exp Clin Cancer Res ; 42(1): 199, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37553567

RESUMEN

BACKGROUND: Gemcitabine resistance (GR) is a significant clinical challenge in pancreatic adenocarcinoma (PAAD) treatment. Macrophages in the tumor immune-microenvironment are closely related to GR. Uncovering the macrophage-induced GR mechanism could help devise a novel strategy to improve gemcitabine treatment outcomes in PAAD. Therefore, preclinical models accurately replicating patient tumor properties are essential for cancer research and drug development. Patient-derived organoids (PDOs) represent a promising in vitro model for investigating tumor targets, accelerating drug development, and enabling personalized treatment strategies to improve patient outcomes. METHODS: To investigate the effects of macrophage stimulation on GR, co-cultures were set up using PDOs from three PAAD patients with macrophages. To identify signaling factors between macrophages and pancreatic cancer cells (PCCs), a 97-target cytokine array and the TCGA-GTEx database were utilized. The analysis revealed CCL5 and AREG as potential candidates. The role of CCL5 in inducing GR was further investigated using clinical data and tumor sections obtained from 48 PAAD patients over three years, inhibitors, and short hairpin RNA (shRNA). Furthermore, single-cell sequencing data from the GEO database were analyzed to explore the crosstalk between PCCs and macrophages. To overcome GR, inhibitors targeting the macrophage-CCL5-Sp1-AREG feedback loop were evaluated in cell lines, PDOs, and orthotopic mouse models of pancreatic carcinoma. RESULTS: The macrophage-CCL5-Sp1-AREG feedback loop between macrophages and PCCs is responsible for GR. Macrophage-derived CCL5 activates the CCR5/AKT/Sp1/CD44 axis to confer stemness and chemoresistance to PCCs. PCC-derived AREG promotes CCL5 secretion in macrophages through the Hippo-YAP pathway. By targeting the feedback loop, mithramycin improves the outcome of gemcitabine treatment in PAAD. The results from the PDO model were corroborated with cell lines, mouse models, and clinical data. CONCLUSIONS: Our study highlights that the PDO model is a superior choice for preclinical research and precision medicine. The macrophage-CCL5-Sp1-AREG feedback loop confers stemness to PCCs to facilitate gemcitabine resistance by activating the CCR5/AKT/SP1/CD44 pathway. The combination of gemcitabine and mithramycin shows potential as a therapeutic strategy for treating PAAD in cell lines, PDOs, and mouse models.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Animales , Ratones , Gemcitabina , Neoplasias Pancreáticas/metabolismo , Desoxicitidina/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Técnicas de Cocultivo , Adenocarcinoma/patología , Plicamicina/metabolismo , Plicamicina/farmacología , Plicamicina/uso terapéutico , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Macrófagos/metabolismo , ARN Interferente Pequeño/farmacología , Organoides/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
7.
Micromachines (Basel) ; 14(5)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37241564

RESUMEN

The channel temperature distribution and breakdown points are difficult to monitor for the traditional p-GaN gate HEMTs under high power stress, because the metal gate blocks the light. To solve this problem, we processed p-GaN gate HEMTs with transparent indium tin oxide (ITO) as the gate terminal and successfully captured the information mentioned above, utilizing ultraviolet reflectivity thermal imaging equipment. The fabricated ITO-gated HEMTs exhibited a saturation drain current of 276 mA/mm and an on-resistance of 16.6 Ω·mm. During the test, the heat was found to concentrate in the vicinity of the gate field in the access area, under the stress of VGS = 6 V and VDS = 10/20/30 V. After 691 s high power stress, the device failed, and a hot spot appeared on the p-GaN. After failure, luminescence was observed on the sidewall of the p-GaN while positively biasing the gate, revealing the side wall is the weakest spot under high power stress. The findings of this study provide a powerful tool for reliability analysis and also point to a way for improving the reliability of the p-GaN gate HEMTs in the future.

8.
Micromachines (Basel) ; 14(5)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37241665

RESUMEN

The bias temperature instability (BTI) effect of p-GaN gate high-electron-mobility transistors (HEMTs) is a serious problem for reliability. To uncover the essential cause of this effect, in this paper, we precisely monitored the shifting process of the threshold voltage (VTH) of HEMTs under BTI stress by fast sweeping characterizations. The HEMTs without time-dependent gate breakdown (TDGB) stress featured a high VTH shift of 0.62 V. In contrast, the HEMT that underwent 424 s of TDGB stress clearly saw a limited VTH shift of 0.16 V. The mechanism is that the TDGB stress can induce a Schottky barrier lowering effect on the metal/p-GaN junction, thus boosting the hole injection from the gate metal to the p-GaN layer. This hole injection eventually improves the VTH stability by replenishing the holes lost under BTI stress. It is the first time that we experimentally proved that the BTI effect of p-GaN gate HEMTs was directly dominated by the gate Schottky barrier that impeded the hole supply to the p-GaN layer.

9.
Mol Cancer ; 22(1): 5, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627693

RESUMEN

BACKGROUND: Accumulated evidence highlights the significance of the crosstalk between epigenetic and epitranscriptomic mechanisms, notably 5-methylcytosine (5mC) and N6-methyladenosine (m6A). Herein, we conducted a widespread analysis regarding the crosstalk between 5mC and m6A regulators in hepatocellular carcinoma (HCC). METHODS: Pan-cancer genomic analysis of the crosstalk between 5mC and m6A regulators was presented at transcriptomic, genomic, epigenetic, and other multi-omics levels. Hub 5mC and m6A regulators were summarized to define an epigenetic and epitranscriptomic module eigengene (EME), which reflected both the pre- and post-transcriptional modifications. RESULTS: 5mC and m6A regulators interacted with one another at the multi-omic levels across pan-cancer, including HCC. The EME scoring system enabled to greatly optimize risk stratification and accurately predict HCC patients' clinical outcomes and progression. Additionally, the EME accurately predicted the responses to mainstream therapies (TACE and sorafenib) and immunotherapy as well as hyper-progression. In vitro, 5mC and m6A regulators cooperatively weakened apoptosis and facilitated proliferation, DNA damage repair, G2/M arrest, migration, invasion and epithelial-to-mesenchymal transition (EMT) in HCC cells. The EME scoring system was remarkably linked to potential extrinsic and intrinsic immune escape mechanisms, and the high EME might contribute to a reduced copy number gain/loss frequency. Finally, we determined potential therapeutic compounds and druggable targets (TUBB1 and P2RY4) for HCC patients with high EME. CONCLUSIONS: Our findings suggest that HCC may result from a unique synergistic combination of 5mC-epigenetic mechanism mixed with m6A-epitranscriptomic mechanism, and their crosstalk defines therapeutic response and pharmacogenomic landscape.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , 5-Metilcitosina , Apoptosis , Farmacogenética , Línea Celular Tumoral , Puntos de Control de la Fase G2 del Ciclo Celular , Progresión de la Enfermedad
10.
Cell Death Dis ; 14(1): 63, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36707504

RESUMEN

Ubiquitin-specific protease 39(USP39) plays an important role in modulating pre-mRNA splicing and ubiquitin-proteasome dependent proteolysis as a member of conserved deubiquitylation family. Accumulating evidences prove that USP39 participates in the development of hepatocellular carcinoma (HCC). However, little is known about the mechanism especially deubiquitinating target of USP39 in regulating hepatocellular carcinoma (HCC) growth. Here, we prove that USP39 promotes HCC cell proliferation and migration by directly deubiquitin ß-catenin, a key molecular of Wnt/ß-catenin signaling pathway whose abnormal expression or activation results in several tumors, following its co-localization with USP39. In this process, the expression of E3 ligase TRIM26, which is proved to restrain HCC in our previous research, shows a decreasing trend. We further demonstrate that TRIM26 pre-mRNA splicing and maturation is inhibited by USP39, accompanied by its reduction of ubiquitinating ß-catenin, facilitating HCC progression indirectly. In summary, our data reveal a novel mechanism in the progress of HCC that USP39 promotes the proliferation and migration of HCC through increasing ß-catenin level via both direct deubiquitination and reducing TRIM26 pre-mRNA maturation and splicing, which may provide a new idea and target for clinical treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Precursores del ARN , Línea Celular Tumoral , beta Catenina/genética , beta Catenina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proliferación Celular/genética , Vía de Señalización Wnt , Regulación Neoplásica de la Expresión Génica , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo
11.
Cell Biol Toxicol ; 39(5): 1995-2010, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-34822033

RESUMEN

Cisplatin is the effective chemotherapeutic drug in colon cancer treatment, but its therapeutic efficacy is limited by intrinsic or acquired drug resistance and detrimental side effects. Therefore, improving the effect of cisplatin chemotherapy remains a great challenge. The previous study identified that USP39 was relevant to cisplatin resistance of lung cancer. However, the function and mechanisms of USP39 regulating the chemosensitivity of cisplatin in colorectal cancer remain unclear. In this study, we reveal that USP39 is associated with colon cancer cells sensitivity to cisplatin. Depletion of USP39 enhances the cisplatin-induced apoptosis in HCT116 cells. Conversely, overexpression of USP39 attenuates apoptosis in RKO cells. Furthermore, we demonstrate that USP39 depletion promotes apoptosis induced by cisplatin, which is related with the induction of oxidative stress and DNA damage response. Further studies show that USP39 regulates cisplatin-induced apoptosis dependent on p53. The underlying mechanism is demonstrated by knocking down USP39, that results in p53 upregulation, associated with its prolonged half-life. Collectively, our findings reveal that USP39 might be a negative factor of the p53 mediated cisplatin sensitivity of colon cancer, and suggest USP39 as a potential molecular target for cisplatin chemotherapy of colon cancer.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Neoplasias Pulmonares , Humanos , Cisplatino/farmacología , Proteína p53 Supresora de Tumor/genética , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Neoplasias Pulmonares/genética , Apoptosis , Antineoplásicos/farmacología , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo
12.
Gene Expr Patterns ; 46: 119287, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36341975

RESUMEN

BACKGROUND: As a newly discovered muscle factor secreted by skeletal muscle cells, irisin is a polypeptide fragment formed from hydrolysis of fibronectin type Ⅲ domain-containing protein 5 (FNDC5). Irisin can promote beigeing of white adipose tissue (WAT) and regulate glucose and lipid metabolisms. However, the functions of irisin in skeletal muscle development remain largely unknown. In order to characterize the expression of irisin, this study investigated the expression of irisin precursor FNDC5 in myoblasts and skeletal muscles during different developmental stages of SPF mice. RESULTS: The Western blot, quantitative real-time PCR (qRT-PCR), and immunofluorescence assay results showed that FNDC5 was expressed in all the developmental stages of myoblasts and gastrocnemius, but its expression differed at different stages. FNDC5 protein exhibited the highest expression in gastrocnemius of sexually mature mice, followed by elderly mice and adolescent mice, and it displayed the lowest expression in pups. Additionally, FNDC5 protein was mainly expressed in cytoplasm, and it had the highest expression in primary myoblasts, followed by the myotubes with the lowest expression in C2C12 myogenic cells. CONCLUSIONS: Overall, FNDC5 was mainly expressed in cytoplasm and extracellular matrix with different expression levels at different developmental stages of skeletal muscle cells and tissues in mice. This study will provide new strategies for promoting skeletal muscle development and treating muscle- and metabolism-related disease by using irisin.


Asunto(s)
Fibronectinas , Músculo Esquelético , Ratones , Animales , Fibronectinas/genética , Fibronectinas/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Factores de Transcripción/metabolismo
13.
Front Mol Biosci ; 9: 907148, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35832736

RESUMEN

In recent years, the studies of the role of microRNAs in adipogenesis and adipocyte development and the corresponding molecular mechanisms have received great attention. In this work, we investigated the function of miR-140 in the process of adipogenesis and the molecular pathways involved, and we found that adipogenic treatment promoted the miR-140-5p RNA level in preadipocytes. Over-expression of miR-140-5p in preadipocytes accelerated lipogenesis along with adipogenic differentiation by transcriptional modulation of adipogenesis-linked genes. Meanwhile, silencing endogenous miR-140-5p dampened adipogenesis. Platelet-derived growth factor receptor alpha (PDGFRα) was shown to be a miR-140-5p target gene. miR-140-5p over-expression in preadipocyte 3T3-L1 diminished PDGFRα expression, but silencing of miR-140-5p augmented it. In addition, over-expression of PDGFRα suppressed adipogenic differentiation and lipogenesis, while its knockdown enhanced these biological processes of preadipocyte 3T3-L1. Altogether, our current findings reveal that miR-140-5p induces lipogenesis and adipogenic differentiation in 3T3-L1 cells by targeting PDGFRα, therefore regulating adipogenesis. Our research provides molecular targets and a theoretical basis for the treatment of obesity-related metabolic diseases.

14.
Sci Total Environ ; 831: 154917, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35364170

RESUMEN

Animal manures are reported as good substitutes for chemical fertilizers to mobilize soil phosphorus (P). However, the mechanisms on how different types of manures regulate microbial biomass involved in P mobilization remain unclear. In this study, we conducted a two-year field experiment to investigate variations in soil microbial biomass carbon (MBC) and P (MBP) and P fractions after 30% animal manures substitution (pig manure (PM), chicken manure (CM), and dairy manure (DM)) in paddy soil. Furthermore, a 30-day incubation experiment was used to explore the mechanisms of soil P transformation induced by 100% manures addition. Two-year field experiment results showed that, compared to the chemical NPK fertilizer, 30% manure substitution didn't influence rice and wheat yields significantly but decreased soil total P loss from runoff by 3.2%. However, 30% manure substitution significantly enhanced MBC and MBP by 11.3-18.4% and 57.1-81.2%, respectively, which also promoted the transformation of moderately labile P (M-P) to labile P (L-P). Moreover, the incubation experiment also convinced that all manures caused higher MBC than chemical P fertilizer. Meanwhile, compared to the no P fertilizer, manures increased L-P and organic P by 2.7%-14.7% and 6.4%-20.0%, respectively. Redundancy analysis indicated that soil MBC/MBP ratio was the main factor to soil L-P and M-P, indicating that animal manures can improve soil microbial abundance and thus promote M-P to L-P in soil. Among three animal manures, PM could improve the mobilization potential of P mostly, due to the highest C source activity by 13C NMR analysis. Our study indicated that animal manures especially PM can be considered as a good candidate for agricultural P management in paddy soils because of their capacity to promote soil P transformation.


Asunto(s)
Microbiota , Oryza , Agricultura/métodos , Animales , Carbono/análisis , Fertilizantes/análisis , Estiércol , Fósforo/análisis , Suelo/química , Porcinos
15.
Leg Med (Tokyo) ; 54: 101974, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34736140

RESUMEN

To investigate the genetic diversity and forensic identification efficiency of X-chromosomal short tandem repeats (X-STRs) in the Yunnan Han population, 16 X-STRs in 415 Yunnan Han individuals (247 males and 168 females) were studied. A total of 137 alleles were detected, and all loci in the Yunnan Han population were highly polymorphic. The combined discrimination of males (PDm) and females (PDf) was 0.9999997769115 and 0.999999999999999999996, respectively. Interpopulation comparisons between the Yunnan Han population and 21 other populations showed that the evolutionary relationships between different groups with the same ethnic group or nearby geographic origins were closer. This study provides the first data on X-STR genetic polymorphisms in the Yunnan Han population and enriches the X-STR database for the Chinese Han population.


Asunto(s)
Genética de Población , Polimorfismo Genético , China , Femenino , Frecuencia de los Genes , Humanos , Masculino , Repeticiones de Microsatélite/genética , Polimorfismo Genético/genética
16.
Nanotechnology ; 33(15)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-34952533

RESUMEN

Voltage-driven stochastic magnetization switching in a nanomagnet has attracted more attention recently with its superiority in achieving energy-efficient artificial neuron. Here, a novel pure voltage-driven scheme with ∼27.66 aJ energy dissipation is proposed, which could rotate magnetization vector randomly using only a pair of electrodes covered on the multiferroic nanomagnet. Results show that the probability of 180° magnetization switching is examined as a sigmoid-like function of the voltage pulse width and magnitude, which can be utilized as the activation function of designed neuron. Considering the size errors of designed neuron in fabrication, it's found that reasonable thickness and width variations cause little effect on recognition accuracy for MNIST hand-written dataset. In other words, the designed pure voltage-driven spintronic neuron could tolerate size errors. These results open a new way toward the realization of artificial neural network with low power consumption and high reliability.

17.
ACS Omega ; 6(8): 5730-5738, 2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33681612

RESUMEN

Soil microorganisms can be altered by plant invasion into wetland ecosystems and comprise an important linkage between phosphorus (P) availability and soil carbon (C) chemistry; however, the intrinsic mechanisms of P and C transformation associated with microbial community and function are poorly understood in coastal wetland. In this study, we used a sequential fractionation method and 13C nuclear magnetic resonance (NMR) spectroscopy to capture the changes in soil P pools and C chemical composition with bare flats (BF), native Phragmites australis(PA), and invasive Spartina alterniflora(SA), respectively. The responses of the soil microbial community using phospholipid fatty acid (PLFA) profiling and function indicated by nine enzyme activities associated with C, nitrogen (N), and P cycles were also investigated. Compared to PA and BF, SA invasion significantly (P < 0.05) changed P pools and mainly increased the available P by 17.5 and 37.0%, respectively. The presence of the plants (SA and PA) significantly (P < 0.05) altered the soil C chemical composition mainly by affecting the aliphatic functional groups, resulting in a lower alkyl C/O-alkyl C ratio value. Compared to BF and SA, PA significantly (P < 0.05) increased arbuscular mycorrhizal fungi (AMF) abundance. Soil enzyme activity, especially for the P and C cycle enzymes, was also affected by plant species with the highest geometric mean enzyme and hydrolase activity for the PA zone. We also found that soil C compositions and P pools were associated with microbial community structure and enzyme activity, respectively. However, little interaction between C and P was found on either soil microbial composition or soil enzyme activity variation. Further, microbial community composition was tightly correlated with the soil P compared to soil C chemistry, while enzyme activity showed more response with soil C chemistry compared to soil P pool changes.

18.
Cell Death Differ ; 28(8): 2315-2332, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33649471

RESUMEN

Emerging evidence suggests that USP39 plays an important role in the development of hepatocellular carcinoma (HCC). However, the molecular mechanism by which USP39 promotes HCC progression has not been well defined, especially regarding its putative ubiquitination function. Zinc-finger E-box-binding homeobox 1 (ZEB1) is a crucial inducer of epithelial-to-mesenchymal transition (EMT) to promote tumor proliferation and metastasis, but the regulatory mechanism of ZEB1 stability in HCC remains enigmatic. Here, we reveal that USP39 is highly expressed in human HCC tissues and correlated with poor prognosis. Moreover, USP39 depletion inhibits HCC cell proliferation and metastasis by promoting ZEB1 degradation. Intriguingly, deubiquitinase USP39 has a direct interaction with the E3 ligase TRIM26 identified by co-immunoprecipitation assays and immunofluorescence staining assays. We further demonstrate that TRIM26 is lowly expressed in human HCC tissues and inhibits HCC cell proliferation and migration. TRIM26 promotes the degradation of ZEB1 protein by ubiquitination in HCC. Deubiquitinase USP39 and E3 ligase TRIM26 function in an antagonistic pattern, but not a competitive pattern, and play key roles in controlling ZEB1 stability to determine the HCC progression. In summary, our data reveal a previously unknown mechanism that USP39 and TRIM26 balance the level of ZEB1 ubiquitination and thereby determine HCC cell proliferation and migration. This novel mechanism may provide new approaches to target treatment for inhibiting HCC development by restoring TRIM26 or suppressing USP39 expression in HCC cases with high ZEB1 protein levels.


Asunto(s)
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Animales , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Progresión de la Enfermedad , Humanos , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Ratones , Ratones Desnudos , Análisis de Supervivencia , Ubiquitinación
19.
ACS Omega ; 6(4): 3259-3266, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33553944

RESUMEN

Phosphorus (P) is an essential nutrient for crop production, and animal manures are rich in P. When using animal manures as alternatives to synthetic fertilizers, it is important to know the kinetics of P release from different animal manures and the forms, amounts, and dynamics of P in manure-treated soils. We chose four types of manure, viz., pig manure (PM), chicken manure (CM), dairy manure (DM), and commercial organic compost (OM), and evaluated the P release rate and availability in water solution and flooded/upland paddy soils. The WEP/total P (TP) and the water-extractable P (WEP) concentrations are highest for OM with the order: OM > PM > CM > DM. An increase in soil Olsen-P concentration was observed for the addition of manure with a varying application rate of P from low to moderate to high. The release capacity of Olsen-P in flooded conditions was higher than that in upland conditions. Under the flooded soil, PM and OM have faster release rates than CM and OM in the upland soil. Moreover, PM significantly increased available P by 29% in the flooded paddy soil while moderately inorganic P increased by 17% in the upland paddy soil. Olsen-P has a significant linear relationship with available P (Resin-P + NaHCO3-Pi; R 2 = 0.104; P < 0.01) and moderately inorganic P (NaOH-Pi + HCl-P; R 2 = 0.286; P < 0.01). The structural equation model showed that the organic input was beneficial to the conversion of moderately inorganic P to available P. Our results indicate that PM amendment promotes the release of available P in paddy soil.

20.
Mol Carcinog ; 60(4): 265-278, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33634905

RESUMEN

Ubiquitin-specific protease 39 (USP39) is frequently overexpressed in a variety of cancers, and involved in the regulation of various biological processes, such as cell proliferation, cell cycle progression, apoptosis and pre-messenger RNA splicing. Nevertheless, the biological roles and mechanisms of USP39 in colon cancer remain largely unknown. In this study, we analyzed whether USP39 can be a molecular target for the treatment of colon cancer. Whilst overexpression of USP39 was detected in human colon cancer tissues and cell lines, USP39 knockdown was observed to inhibit the growth and subcutaneous tumor formation of colon cancer cells. Further analysis showed that USP39 knockdown can stabilize p21 by prolonging the half-life of p21 and by upregulating the promoter activity of p21. The RS domain and USP domain of USP39 were found to play an essential role. Additionally, our findings revealed that USP39 plays a regulatory role in the proliferation of colon cancer cells by the p53/p21/CDC2/cyclin B1 axis in a p21-dependent manner. Taken together, this study provided the theoretical basis that may facilitate the development of USP39 as a novel potential target of colon cancer therapy.


Asunto(s)
Neoplasias del Colon/patología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/química , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Animales , Proteína Quinasa CDC2/metabolismo , Línea Celular Tumoral , Proliferación Celular , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Ciclina B1/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HCT116 , Humanos , Ratones , Regiones Promotoras Genéticas , Dominios Proteicos , Estabilidad Proteica , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Proteasas Ubiquitina-Específicas/química , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...